Practice Examination C (Unit 3) (Assessing only Unit 3)

MATHEMATICS Advanced Higher Grade

Time allowed - 1 hour

Read Carefully

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Calculators may be used in this paper.
- 3. Answers obtained by readings from scale drawings will not receive any credit.
- 4. This examination paper contains questions graded at all levels.

All questions should be attempted

1. (a) Find the first five terms of the Maclaurin Series for
$$(1+2x)^{\frac{3}{2}}$$
. (4)

- (b) For what values of x is this series valid? (2)
- (c) Use this expansion to find an approximation for $1 \cdot 4^{\frac{3}{2}}$ to 4 decimal places. (2)
- 2. For what value(s) of x, $(x \neq 0)$, is the matrix $\begin{pmatrix} x & 2x \\ x-1 & 3x-5 \end{pmatrix}$ singular? (3)
- 3. Find the g.c.d. of 320 and 153.

Hence find *a*, *b* such that 320a + 153b = 1.

4. Show that the vectors
$$\underline{a} = \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}$$
, $\underline{b} = \begin{pmatrix} 6 \\ -2 \\ 8 \end{pmatrix}$ and $\underline{c} = \begin{pmatrix} -5 \\ 5 \\ 4 \end{pmatrix}$ are coplanar and find the

equation of the plane.

Hence find the angle between this plane and the plane 2x + 3z = 5 (7)

(5)

(10)

5. A recurrence relation is given by the formula

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{3}{x_n} \right) \, .$$

Find the fixed points of this recurrence relation and hence show that the series converges for $x_0 = 0.5$, stating the exact value of the root to which it converges. (5)

6. Prove that the differential equation $x \, dy + 2y \, dx = \cos x \, dx$ is linear and hence solve the equation given that $y(\pi) = 1$.

END OF QUESTION PAPER

	Give one mark for each •	Illustrations for awarding each mark
1(a)	ans: $1 + 3x + \frac{3x^2}{2} - \frac{x^3}{2} + \frac{3x^4}{8}$ 4 marks	
	 finds values for f(0) and f'(0) finds values for f"(0), f"'(0) and f^{iv}(0) 	• $f(0) = 1; f'(0) = 3$ • $f''(0) = 3; f'''(0) = -3; f^{iv}(0) = 9$
	• using correct series	• $f(x) \approx f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3$
	• final statement of 5 terms	• $1+3x+\frac{3x^2}{2}-\frac{x^3}{2}+\frac{3x^4}{8}$
1(b)	ans: $ x < \frac{1}{2}$ 2 marks	
	 knows how to find range of validity finds range correctly	• $ 2x < 1$ • $ x < \frac{1}{2}$
1(c)	ans: 1.6566 2 marks	$3(0,2)^2$ $(0,2)^3$ $3(0,2)^4$
	• knows to substitute 0.2 for x	• $1+3(0\cdot 2)+\frac{3(0\cdot 2)^2}{2}-\frac{(0\cdot 2)^3}{2}+\frac{3(0\cdot 2)^4}{8}$
	• finding correct approximation	• 1.6566
2.	ans: <i>x</i> = 3 3 marks	
	 knows to find determinant knows to put determinant equal to zero finds value of x 	• $x(3x-5)-2x(x-1)$ • $x(3x-5)-2x(x-1) = 0$ • $x = 0, x = 3$ but $x \neq 0$
3.	ans: $a = 11, b = -23$ 5 marks	• $320 = 2 \times 153 + 14$
	uses correct algorithmcorrect steps in algorithm	• $153 = 10 \times 14 + 13$ $14 = 1 \times 13 + 1$ $13 = 13 \times 1$
		• gcd of 320 and 153 = 1
	• final statement	• $1 = 14 - 1 \times 13$ = $14 - 1 \times (153 - 10 \times 14)$
	• method	$= 11 \times 14 - 153$ = 11 × (320 - 2 × 153) - 153
	• answer	= $11 \times 320 - 23 \times 153$ • $a = 11, b = -23$

Marking Scheme - AH – Practice Examination C (Unit 3)

	Give one mark for each •	Illustrations for awarding each mark
4.	ans: proof, $12x + 16y - 5z = 0$, 83° 7 marks	
	• method	• Suppose $\underline{c} = \lambda \underline{a} + \mu \underline{b}$ then $\begin{pmatrix} -5\\5\\4 \end{pmatrix} = \lambda \begin{pmatrix} -1\\2\\4 \end{pmatrix} + \mu \begin{pmatrix} 6\\-2\\8 \end{pmatrix}$
	• knows how to find unknowns	$-5 = -\lambda + 6\mu$ • $5 = 2\lambda - 2\mu$ $4 = 4\lambda + 8\mu$
	• finds unknowns and checks with <i>z</i> coordinate	• $\lambda = 2, \ \mu = -\frac{1}{2} \Rightarrow 4 = 4 \times 2 + 8 \times \frac{1}{2}$ - yes! $\underline{c} = 2\underline{a} - \frac{1}{2}\underline{b}$ so vectors are coplanar • $\overrightarrow{ab} \times \overrightarrow{ac} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ 7 & -4 & 4 \\ -4 & 3 & 0 \end{vmatrix}$
	• knows how to find normal	• $ab \times ac = \begin{bmatrix} 7 & -4 & 4 \\ 4 & 2 & 0 \end{bmatrix}$
	• finds equation of plane	• $-12x - 16y + 5z = 0$ or $12x + 16y - 5z = 0$
	• knows how to find angle	• $\cos\theta = \frac{\underline{a} \cdot \underline{b}}{ \underline{a} \underline{b} } = \frac{\begin{pmatrix} 12\\16\\-5 \end{pmatrix} \cdot \begin{pmatrix} 2\\0\\3 \end{pmatrix}}{\sqrt{425} \cdot \sqrt{13}} = \frac{9}{74.3303}$
	• finds angle correctly	$ \underline{a} \underline{b} = \sqrt{425} \cdot \sqrt{13} = 74.3303$ • $\theta = 83 \cdot 0^{\circ}$
5.	ans: $x = \pm \sqrt{3}$, $\sqrt{3}$ 5 marks	
	• knows how to find fixed points	• $x = \frac{1}{2}\left(x + \frac{3}{x}\right)$
	• correct steps in solving	• $2x = x + \frac{3}{x} \Rightarrow x^2 = 3$
	• correct fixed points	• $x = \pm \sqrt{3}$ • $x_1 = \frac{1}{2} \left(0.5 + \frac{3}{0.5} \right) = 3.25$;
	• correct method for finding root	• $x_1 = \frac{1}{2} \left(0.5 + \frac{1}{0.5} \right) = 3.25$; $x_2 = 2.0865$; $x_3 = 1.7622$; $x_4 = 1.7323$
	• states exact value of root	• converges to $\sqrt{3}$

	Give one mark for each •	Illustrations for awarding each mark
6.	ans: $y = \frac{\sin x}{x} + \frac{\cos x + \pi^2 + 1}{x^2}$ 10 marks	
	 knows to rearrange equation rearranges equation correctly 	• $\frac{dy}{dx} + \frac{2y}{x} = \frac{\cos x}{x}$
	states form of linear equationfinds integrating factor	• $\frac{dy}{dx} + P(x)y = Q(x)$ • I. F. $= e^{\int \frac{2}{x} dx} = e^{2\ln x } = x^2$
	 states modified equation 	• $\frac{d}{dx}(x^2y) = x\cos x$
	re-writes as an integralintegration by parts	• $x^2 y = \int x \cos x dx$ • $= x \sin x - \int \sin x dx = x \sin x + \cos x + C$
	final form of answerfinds constant of integration	• $y = \frac{\sin x}{x} + \frac{\cos x}{x^2} + \frac{C}{x^2}$ • $C = \pi^2 + 1$ $\sin x \cos x + \pi^2 + 1$
	• states exact solution	• $y = \frac{\sin x}{x} + \frac{\cos x + \pi^2 + 1}{x^2}$

TOTAL 38 MARKS