Practice Examination C (Unit 3) (Assessing only Unit 3) MATHEMATICS
 Advanced Higher Grade

Time allowed - 1 hour

Read Carefully

1. Full credit will be given only where the solution contains appropriate working.
2. Calculators may be used in this paper.
3. Answers obtained by readings from scale drawings will not receive any credit.
4. This examination paper contains questions graded at all levels.

All questions should be attempted

1. (a) Find the first five terms of the Maclaurin Series for $(1+2 x)^{3 / 2}$.
(b) For what values of x is this series valid?
(c) Use this expansion to find an approximation for $1 \cdot 4^{3 / 2}$ to 4 decimal places.
2. For what value(s) of $x,(x \neq 0)$, is the matrix $\left(\begin{array}{cc}x & 2 x \\ x-1 & 3 x-5\end{array}\right)$ singular?
3. Find the g.c.d. of 320 and 153.

Hence find a, b such that $320 a+153 b=1$.
4. Show that the vectors $\underline{a}=\left(\begin{array}{c}-1 \\ 2 \\ 4\end{array}\right), \underline{b}=\left(\begin{array}{c}6 \\ -2 \\ 8\end{array}\right)$ and $\underline{c}=\left(\begin{array}{c}-5 \\ 5 \\ 4\end{array}\right)$ are coplanar and find the equation of the plane.

Hence find the angle between this plane and the plane $2 x+3 z=5$
5. A recurrence relation is given by the formula

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{3}{x_{n}}\right) .
$$

Find the fixed points of this recurrence relation and hence show that the series converges for $x_{0}=0 \cdot 5$, stating the exact value of the root to which it converges.
6. Prove that the differential equation $x d y+2 y d x=\cos x d x$ is linear and hence solve the equation given that $y(\pi)=1$.

Marking Scheme - AH - Practice Examination C (Unit 3)

	Give one mark for each -	Illustrations for awarding each mark
1(a)	ans: $1+3 x+\frac{3 x^{2}}{2}-\frac{x^{3}}{2}+\frac{3 x^{4}}{8}$ - finds values for $f(0)$ and $f^{\prime}(0)$ - finds values for $f^{\prime \prime}(0), f^{\prime \prime \prime}(0)$ and $f^{i v}(0)$ - using correct series - final statement of 5 terms	- $f(0)=1 ; f^{\prime}(0)=3$ - $f^{\prime \prime}(0)=3 ; f^{\prime \prime \prime}(0)=-3 ; f^{i v}(0)=9$ - $f(x) \approx f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}$ - $1+3 x+\frac{3 x^{2}}{2}-\frac{x^{3}}{2}+\frac{3 x^{4}}{8}$
1(b)	ans: $\|x\|<\frac{1}{2} \quad 2$ marks - knows how to find range of validity - finds range correctly	- $\|2 x\|<1$ - $\|x\|<\frac{1}{2}$
1(c)	ans: 1.6566 2 marks - knows to substitute $0 \cdot 2$ for x - finding correct approximation	- $1+3(0 \cdot 2)+\frac{3(0 \cdot 2)^{2}}{2}-\frac{(0 \cdot 2)^{3}}{2}+\frac{3(0 \cdot 2)^{4}}{8}$ - 1.6566
2.	ans: $x=3$ 3 marks - knows to find determinant - knows to put determinant equal to zero - finds value of x	- $x(3 x-5)-2 x(x-1)$ - $x(3 x-5)-2 x(x-1)=0$ - $x=0, x=3$ but $x \neq 0$
3.	ans: $a=11, b=-23$ - uses correct algorithm - correct steps in algorithm - final statement - method - answer	$\begin{aligned} - & 320=2 \times 153+14 \\ -153 & =10 \times 14+13 \\ & 14=1 \times 13+1 \\ 13 & =13 \times 1 \end{aligned}$ - gcd of 320 and $153=1$ $\begin{aligned} -1 & =14-1 \times 13 \\ & =14-1 \times(153-10 \times 14) \\ & =11 \times 14-153 \\ & =11 \times(320-2 \times 153)-153 \\ & =11 \times 320-23 \times 153 \\ -a & =11, b=-23 \end{aligned}$

	Give one mark for each -	Illustrations for awarding each mark
4.	ans: proof, $12 x+16 y-5 z=0,83^{\circ} \quad 7$ marks - method - knows how to find unknowns - finds unknowns and checks with z coordinate - knows how to find normal - finds equation of plane - knows how to find angle - finds angle correctly	- Suppose $\underline{c}=\lambda \underline{a}+\mu \underline{b}$ then $\left(\begin{array}{c}-5 \\ 5 \\ 4\end{array}\right)=\lambda\left(\begin{array}{c}-1 \\ 2 \\ 4\end{array}\right)+\mu\left(\begin{array}{c}6 \\ -2 \\ 8\end{array}\right)$ $-5=-\lambda+6 \mu$ - $5=2 \lambda-2 \mu$ $4=4 \lambda+8 \mu$ - $\lambda=2, \mu=-\frac{1}{2} \Rightarrow 4=4 \times 2+8 \times \frac{1}{2}$ - yes! $\underline{c}=2 \underline{a}-\frac{1}{2} \underline{b}$ so vectors are coplanar - $\overrightarrow{a b} \times \overrightarrow{a c}=\left\|\begin{array}{ccc}\underline{i} & \underline{j} & \frac{k}{7} \\ 7 & -4 & 4 \\ -4 & 3 & 0\end{array}\right\|$ - $-12 x-16 y+5 z=0$ or $12 x+16 y-5 z=0$ - $\cos \theta=\frac{\underline{a} \cdot \underline{b}}{\|\underline{a}\|\|\underline{b}\|}=\frac{\left(\begin{array}{c}12 \\ 16 \\ -5\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 0 \\ 3\end{array}\right)}{\sqrt{425} \cdot \sqrt{13}}=\frac{9}{74.3303}$ - $\theta=83 \cdot 0^{\circ}$
5.	ans: $x= \pm \sqrt{3}, \sqrt{3} \quad 5$ marks - knows how to find fixed points - correct steps in solving - correct fixed points - correct method for finding root - states exact value of root	- $x=\frac{1}{2}\left(x+\frac{3}{x}\right)$ - $2 x=x+\frac{3}{x} \Rightarrow x^{2}=3$ - $x= \pm \sqrt{3}$ - $x_{1}=\frac{1}{2}\left(0 \cdot 5+\frac{3}{0 \cdot 5}\right)=3 \cdot 25$; $x_{2}=2 \cdot 0865 ; x_{3}=1.7622 ; x_{4}=1.7323$ - converges to $\sqrt{3}$

	Give one mark for each -	Illustrations for awarding each mark
6.	$\text { ans: } y=\frac{\sin x}{x}+\frac{\cos x+\pi^{2}+1}{x^{2}} \quad \mathbf{1 0} \text { marks }$ - knows to rearrange equation - rearranges equation correctly - states form of linear equation - finds integrating factor - states modified equation - re-writes as an integral - integration by parts - final form of answer - finds constant of integration - states exact solution	- $\frac{d y}{d x}+\frac{2 y}{x}=\frac{\cos x}{x}$ - $\frac{d y}{d x}+P(x) y=Q(x)$ - I. F. $=e^{\int \frac{2}{x} d x}=e^{2 \ln \|x\|}=x^{2}$ - $\frac{d}{d x}\left(x^{2} y\right)=x \cos x$ - $x^{2} y=\int x \cos x d x$ - $\quad=x \sin x-\int \sin x d x=x \sin x+\cos x+C$ - $y=\frac{\sin x}{x}+\frac{\cos x}{x^{2}}+\frac{C}{x^{2}}$ - $C=\pi^{2}+1$ - $y=\frac{\sin x}{x}+\frac{\cos x+\pi^{2}+1}{x^{2}}$

TOTAL 38 MARKS

