Practice Examination A (Unit 3)

(Assessing only Unit 3)

MATHEMATICS Advanced Higher Grade

Time allowed - 1 hour

Read Carefully

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Calculators may be used in this paper.
- 3. Answers obtained by readings from scale drawings will not receive any credit.
- 4. This examination paper contains questions graded at all levels.

All questions should be attempted

1. (*a*) Evaluate the product of the quadratic form

$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 1 & 6 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
(2)

(*b*) Find the general result of the quadratic form

$$(x \quad y) \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
 (2)

(c) Find the matrix
$$\begin{pmatrix} p & q \\ r & s \end{pmatrix}$$
 given that

$$(x \quad y) \begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 3x^2 - 3xy + 4y^2 \quad \text{and} \quad \begin{pmatrix} p & q \\ r & s \end{pmatrix}^2 = \begin{pmatrix} -1 & 14 \\ -35 & 6 \end{pmatrix}.$$

$$(4)$$

2. Prove by induction that $2^{3n-1} + 3$ is divisible by 7 for all positive integers *n*. (5)

3. (a) Find the first five non-zero terms of the Maclaurin series for $\ln(1+x)$. (5)

- (b) Deduce the Maclaurin series for $\ln(1-2x)$. (2)
- (c) Hence find the first five terms of the Maclaurin series for $\ln(1 x 2x^2)$ (3)

4. (a) Prove that the volume of a tetrahedron is given by the formula

- (*b*) Find the volume of tetrahedron OABC where O is the origin and A, B and C are the points (3, 2, 4), (4, 3, 5) and (0, 5, 3). (4)
- 5. (a) Find the general solution of the differential equation

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 2e^{-2x}.$$
(6)

(b) Hence determine the solution which satisfies the conditions y(0) = 1, y'(0) = 3. (4)

End of Question Paper

Marking Scheme - AH – Practice Examination B (Unit 3)

	Give one mark for each •	Illustrations for awarding each mark
1(a)	 ans: x² + 3xy + 2y² 2 marks multiplies first 2 matrices together correctly multiplies final 2 correctly 	• $(x \ y) \begin{pmatrix} 1 & 6 \\ -3 & 2 \end{pmatrix} = (x - 3y \ 6x + 2y)$ • $(x - 3y \ 6x + 2y) \begin{pmatrix} x \\ y \end{pmatrix} = x^2 + 3xy + 2y^2$
1(b)	 ans: ax² + (b + c)xy + dy² 2 marks multiplies first 2 matrices together correctly multiplies final 2 correctly 	• $(x y) \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (ax + cy bx + dy)$ • $(ax + cy bx + dy) \begin{pmatrix} x \\ y \end{pmatrix} = ax^2 + bxy + cxy + dy^2$
1(c)	ans: $\begin{pmatrix} 3 & 2 \\ -5 & 4 \end{pmatrix}$ 4 marks • states <i>p</i> and <i>s</i> • squares matrix • equates coefficients • finds <i>q</i> and <i>r</i>	• $p = 3, s = 4$ • $\begin{pmatrix} 3 & q \\ r & 4 \end{pmatrix} \begin{pmatrix} 3 & q \\ r & 4 \end{pmatrix} = \begin{pmatrix} 9+qr & 7q \\ 7r & rq+16 \end{pmatrix}$ • $7q = 14, 7r = -35$ • $q = 2, r = -5$
2.	 ans: Proof 5 marks show true for n = 1 state inductive hypothesis consider the case for n = k + 1 carry out manipulation state conclusion 	 2³⁽¹⁾⁻¹ + 3 = 2² + 3 = 7 which is divisible by 7 so true for <i>n</i> = 1 Assume 2^{3k-1} + 3 = 7<i>m</i> for some m ∈ N Consider 2^{3(k+1)-1} + 3 = 2^{3k+2} + 3 2^{3k+2} + 3 = = 8(2^{3k-1} + 3) - 21 = 8(7<i>m</i>) - 21 = 7(8<i>m</i> - 3) which is divisible by 7 So, if the formula is valid for <i>n</i>, it is valid for <i>n</i> + 1. Since it is valid for <i>n</i> = 1, it is therefore true for all <i>n</i> ≥ 1.

	Give one mark for each •	Illustrations for awarding each mark
3(a)	ans: $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5}$ marks	
	 finds values for f(0), f'(0) finds value for f"(0) finds values for higher order derivatives 	 f(0) = 0, f'(0) = 1 f"(0) = -1 2, -6, -24
	 method final statement of terms	• $f(x) \approx f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 + \dots$ • $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots$
3(b)	ans: $-2x - 2x^2 - \frac{8}{3}x^3 - 4x^4 - \frac{32}{5}x^5$ 2 marks	
	 knows to replace x in (a) with (-2x) all calculations correct 	• $-2x - \frac{(-2x)^2}{2} + \frac{(-2x)^3}{3} - \frac{(-2x)^4}{4} + \frac{(-2x)^5}{5}$ • $-2x - 2x^2 - \frac{8}{3}x^3 - 4x^4 - \frac{32}{5}x^5$
3(c)	ans: $-x - \frac{5}{2}x^2 - \frac{7}{3}x^3 - \frac{17}{4}x^4 - \frac{31}{5}x^5$ 3 marks • recognises connection between series • knows how to combine series • combines series correctly	• $1 - x - 2x^2 = (1 + x)(1 - 2x)$ • $\ln(1 - x - 2x^2) = \ln(1 + x) + \ln(1 - 2x)$ • $-x - \frac{5}{2}x^2 - \frac{7}{3}x^3 - \frac{17}{4}x^4 - \frac{31}{5}x^5$
4(a)	ans: Proof 4 marks	
	 knows how to calculate volume calculates area of base correctly calculates height correctly proves formula 	• Volume = $\frac{1}{3}$ area of base × height • $\frac{1}{2} \underline{a} \times \underline{b} $ • $ \underline{c} \cos \theta$ • $\frac{1}{6} \underline{a} \times \underline{b} \cdot \underline{c} $
4(b)	ans: $1\frac{1}{3}$ units ³ 4 marks	
	• knows how to calculate vector product	
	• calculates vector product correctly	• $-2\underline{i} + \underline{j} + \underline{k}$ (-2)(0)
	 calculates scalar product correctly answer	• $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 3 \end{bmatrix} = 8$ • Volume = $\frac{1}{6} \times 8 = 1\frac{1}{3}$ units ³

	Give one mark for each •	Illustrations for awarding each mark
5(a)	ans: $y = Ae^{-2x} + Be^{-x} - 2xe^{-2x}$ 6 marks	
	 solves auxiliary equation finds complimentary function states correct form of Particular Integral 	• $m^2 + 3m + 2 = 0 \Rightarrow m = -2$, $m = -1$ • $y = Ae^{-2x} + Be^{-x}$ • $y = Cxe^{-2x}$
	 calculates 1st and 2nd derivatives of PI calculates value of <i>C</i> 	$\frac{dy}{dx} = Ce^{-2x} - 2Cxe^{-2x}, \frac{d^2y}{dx^2} = -4Ce^{-2x} + 4Cxe^{-2x}$ • C = -2
	• states general solution	• $y = Ae^{-2x} + Be^{-x} - 2xe^{-2x}$
5(b)	ans: $y = 7e^{-x} - 2e^{-2x}(3+x)$ 4 marks	
	 calculates derivative of general solution substitutes initial conditions into equations solves equations simultaneously states solution 	• $y' = -2Ae^{-2x} - Be^{-x} - 2e^{-2x} + 4xe^{-2x}$ • $1 = A + B$, $5 = -2A - B$ • $A = -6$, $B = 7$ • $y = 7e^{-x} - 6e^{-2x} - 2xe^{-2x}$

Total 41 marks