Practice Examination B

(Assessing Units 1 & 2)

MATHEMATICS Advanced Higher Grade

Time allowed - 2 hours 30 minutes

Read Carefully

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Calculators may be used in this paper.
- 3. Answers obtained by readings from scale drawings will not receive any credit.
- 4. This examination paper contains questions graded at all levels.

All questions should be attempted

1. Evaluate
$$\int_{-1}^{0} \frac{dx}{\sqrt{3 - 2x - x^2}}$$
 (5)

2. Verify that 2*i* is a solution of $z^4 - 4z^3 + 17z^2 - 16z + 52 = 0$.

Hence find all the solutions. (5)

3. Use Gaussian Elimination to solve the following system of equations.

$$x - y + 2z = 7$$

$$3x + 2y + z = -9$$

$$2x + y - 3z = -20$$
(5)

4. (a) Write the binomial expansion of $(a+b)^4$. (2)

(b) Find
$$\left(x + \frac{2}{x}\right)^4 - \left(x - \frac{2}{x}\right)^4$$
 in its simplest form. (5)

5. (a) Differentiate
$$f(x) = e^{\frac{x+1}{x-1}}, x > 1.$$
 (4)

(b) Find the equation of the tangent to the curve $2x^2 - 3xy + y^2 = 0$ at the point (1, 1). (4)

6. Let z = 3 - i and let \overline{z} be the complex conjugate of z.

Solve
$$a\left(\frac{z}{\overline{z}}\right) + bz = 22 - 14i$$
, for $a, b \in \mathbf{R}$. (4)

7. If k is a positive integer and the coefficient of x^2 in the expansion of $(k-4x)^6$ is 19440, find the value of k. (4)

8. The parametric equations $x = \frac{t-3}{2(1+2t)}$, $y = \frac{t}{2(1+2t)}$ represent a line, where $t \in \mathbb{R}$.

Find the Cartesian equation of the line, and show that the point $(\frac{11}{2},1)$ lies on the line. (5)

- 9. The first three terms of an arithmetic series are $8 + 16 + 24 + \dots$
 - (a) Find, in terms of n, an expression for u_n , the nth term, and S_n , the sum to n terms. (4)
 - (b) Hence find the sum of the natural numbers that are both multiples of 8 and smaller than 1000. (3)
- 10. Express $2 2\sqrt{3}i$ in polar form and hence find values for $(2 2\sqrt{3}i)^{\frac{3}{2}}$, writing your answers in the form p + qi, where $p, q \in \mathbf{R}$.
- 11. By expressing $0.\dot{23}$ as a geometric series, write $0.\dot{23}$ in the form $\frac{a}{b}$, where $a, b \in \mathbb{N}$. (3)
- 12. Find the 4th roots of unity and show that the sum of these roots is zero. (5)
- 13. The integral I_n is given by

$$I_n = \int \sin^n x \, dx \, .$$

(a) By using the fact that $\sin^n x = \sin x \sin^{n-1} x$, prove the reduction formula

$$I_n = -\frac{1}{n}\cos x \sin^{n-1} x + \frac{n-1}{n}I_{n-2}$$
(5)

(b) Use the above result to find a reduction formula for $\int_0^{\pi/2} \sin^n x$. (2)

(c) Hence evaluate
$$\int_0^{\pi/2} \sin^8 x$$
. (3)

14. A child's drinking cup is made in the shape of a circular cylinder with a hemispherical top.

The cylinder has height h cm and radius r cm, and the cup has a total surface area of 80π cm².

- (a) Find an expression for the height h in terms of the radius r. (2) [surface area of a sphere = $4\pi r^2$]
- (b) Find the values of h and r for which the cup has a maximum volume. Hence find the maximum volume. (8)
- 15. The function f(x) is given by $f(x) = \frac{x^2 4}{x^2 + 8x}$.
 - (a) Write down the equations of the asymptotes of f(x). (2)
 - (b) Prove that f(x) has no stationary points. (3)
 - (c) Sketch the curve of f(x), showing clearly all its features. (3)
 - (d) Using the sketch in part (c), construct the graph of $\frac{1}{f(x)}$, the curve of the reciprocal function. (4)

End of Question Paper

Marking Scheme - AH Practice Paper B

	Give one mark for each •	Illustrations for awarding each mark
1.	ans: $\frac{\pi}{6}$ 5 marks • knowing to complete the square	• $\int_{-1}^{0} \frac{dx}{\sqrt{4-(x+1)^2}}$
	 knowing to use a suitable substitution finds new limits integrates correctly answer 	• $u = x + 1, du = dx,$ x = -1 : u = 0 • $x = 0 : u = 1$ • $\sin^{-1} \frac{u}{2} \Big _{0}$ • $\frac{\pi}{6}$
2.	 ans: 2i, -2i, 2 + 3i, 2 - 3i substitutes 2i correctly into equation and proves result states complex conjugate is a solution finds first quadratic factor finds second quadratic factor by dividing original equation by first quadratic factor uses quadratic formula to find other 2 solutions 	• $(2i)^4 - 4(2i)^3 + 17(2i)^2 - 16(2i) + 52$ = $16 + 32i - 68 - 32i + 52 = 0$ • $-2i$ is a solution • $(z - 2i)(z + 2i) = z^2 + 4$ • $(z^4 - 4z^3 + 17z^2 - 16z + 52) \div (z^2 + 4)$ • $= z^2 - 4z + 13$ • $2 + 3i, 2 - 3i$
3.	 ans: x = -3, y = -2, z = 4 method first modified system second modified system method of back-substitution values of x, y and z 	• $\begin{bmatrix} 1 & -1 & 2 & 7 \\ 3 & 2 & 1 & -9 \\ 2 & 1 & -3 & -20 \end{bmatrix}$ • $\begin{bmatrix} 1 & -1 & 2 & 7 \\ 0 & 5 & -5 & -30 \\ 0 & 3 & -7 & -34 \end{bmatrix}$ • $\begin{bmatrix} 1 & -1 & 2 & 7 \\ 0 & 5 & -5 & -30 \\ 0 & 0 & -4 & -16 \end{bmatrix}$ • $-4z = -16 \Rightarrow z = 4$ • $y = -2, x = -3$

	Give one mark for each •	Illustrations for awarding each mark
4(a)	ans: $a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$ 2 marks	8
	all powers in expansion	• and • $a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$
	• all coefficients in expansion	
4.0		
4(b)	ans: $16x^2 + \frac{64}{x^2}$ 5 marks	
	• correctly substituting x and $\frac{2}{x}$ in place of $a \& b$	• $x^4 + 4x^3 \left(\frac{2}{x}\right) + 6x^2 \left(\frac{2}{x}\right)^2 + 4x \left(\frac{2}{x}\right)^3 + \left(\frac{2}{x}\right)^4$
	• correct expression	• $x^4 + 8x^2 + 24 + \frac{32}{x^2} + \frac{16}{x^4}$
	• substitutes x and $-\frac{2}{x}$ in place of a and b	•
		$x^4 + 4x^3 \left(-\frac{2}{x}\right) + 6x^2 \left(-\frac{2}{x}\right)^2 + 4x \left(-\frac{2}{x}\right)^3 + \left(-\frac{2}{x}\right)^4$
	correct expression	• $x^4 - 8x^2 + 24 - \frac{32}{x^2} + \frac{16}{x^4}$
	• answer	• $16x^2 + \frac{64}{x^2}$
5(a)	ans: $-\frac{2}{(x-1)^2}e^{\frac{x+1}{x-1}}$ 4 marks	$x+1$ • e^{x-1}
	 knowing how to differentiate <i>e</i> chain rule factor 	$ \bullet \frac{d}{dx} \left(\frac{x+1}{x-1} \right) $
	using quotient rule correctly	$\bullet \frac{d}{dx} \left(\frac{x+1}{x-1} \right) = -\frac{2}{(x-1)^2}$
	• answer	$\bullet - \frac{2}{(x-1)^2} e^{\frac{x+1}{x-1}}$
5(b)	ans: $y = x$ 4 marks	
	differentiating correctly	$\bullet 4x - 3y - 3x\frac{dy}{dx} + 2y\frac{dy}{dx} = 0$
	• finding expression for $\frac{dy}{dx}$	
	finding gradientfinding equation of tangent	• $m = 1$ • $y - 1 = 1(x - 1)$

	Give one mark for each •	Illustrations for awarding each mark
6.	ans: $a = 20$, $b = 2$ 4 mar	
	• finding complex conjugate • finding $\frac{z}{\overline{z}}$	• $\overline{z} = 3 + i$ • $\frac{z}{\overline{z}} = \frac{4}{5} - \frac{3}{5}i$ • $\frac{4}{5}a + 3b = 22, -\frac{3}{5}a - b = -14$
	 equating real and imaginary parts Solving simultaneous equations	• $-a + 3b = 22, -a - b = -14$ • $a = 20, b = 2$
7.	ans: $k = 3$ 4 marl	is .
	 Finding general term knowing to put r = 2 	$ \bullet \binom{6}{r} k^{6-r} (-4x)^r $ $ \bullet r = 2 $
	• substituting $r = 2$ correctly	• $\binom{6}{2}k^4(-4)^2 = 19440 \Rightarrow 240k^4 = 19440$
	• finding value of <i>k</i>	• k = 3
8.	ans: $2x - 14y + 3 = 0$ 5 mark	KS .
	• changing the subject of x to t	$\bullet t = \frac{3 + 2x}{1 - 4x}$
	• changing the subject of y to t	$\bullet t = \frac{2y}{1 - 4y}$
	knowing to equate expressions	$\bullet \frac{3+2x}{1-4x} = \frac{2y}{1-4y}$
	finding equation of lineproving point lies on line	• $2x - 14y + 3 = 0$ • $2(\frac{11}{2}) - 14(1) + 3 = 11 - 14 + 3 = 0$ as required
9(a)	ans: $8n$, $4n(n+1)$ 4 mark	is .
	knowing how to find general termfinding general term	• $u_n = a + (n-1)d$ • $u_n = 8 + (n-1)8 = 8n$
	 knowing how to find sum to n terms 	$\bullet S_n = \frac{n}{2} [2a + (n-1)d]$
	finding sum to n terms	• $S_n = \frac{n}{2} [16 + (n-1)8] = 4n(n+1)$
9(b)	ans: 62000 3 mark	KS .
	 knows how to find n finds n correctly finds sum of terms 	• $8n < 1000 \implies n < 125$ • $n = 124$ • $S_{124} = 4 \times 124 (124 + 1) = 62000$

	Give one mark for each •	Illustrations for awarding each mark
10.	ans: -8 <i>i</i> , 8 <i>i</i> 6 marks	
	finds modulus	• $\sqrt{2^2 + \left(-2\sqrt{3}\right)^2} = 4$
	finds argument	• $\tan \theta = \frac{-2\sqrt{3}}{2} = -\sqrt{3} \Rightarrow \theta = -\frac{\pi}{3}$
	writes complex number in polar form	• $4\left(\cos\left(-\frac{\pi}{3}+2k\pi\right)+i\sin\left(-\frac{\pi}{3}+2k\pi\right)\right)$
	deals with power correctly in polar form	• $4^{\frac{3}{2}}, \frac{3}{2} \left(-\frac{\pi}{3} + 2k\pi \right)$
	finds first solutionfinds second solution	• $k = 0 \Rightarrow -8i$ • $k = 0 \Rightarrow 8i$
11.	ans: $\frac{7}{30}$ 3 marks	
	• writes 0.2333333 As a geometric series	• $\frac{2}{10} + \left(\frac{3}{100} + \frac{3}{1000} + \frac{3}{10000} + \dots\right)$
	finds sum to infinity	• $S_{\infty} = \frac{a}{1-r} = \frac{\frac{3}{100}}{1-\frac{1}{10}} = \frac{1}{30}$
	• answer	$ \cdot \frac{2}{10} + \frac{1}{30} = \frac{7}{30} $
12.	ans: 1, <i>i</i> , -1, - <i>i</i> 5 marks	
	 writes 1 in polar form takes 4th root correctly 	• $1 = \cos 2k\pi + i\sin 2k\pi$ • $z = \cos \frac{2k\pi}{4} + i\sin \frac{2k\pi}{4}$,
	• knows values of <i>k</i> to use	k = 0, 1, 2, 3
	finds roots	• $z = 1, i, -1, -i$
	proves roots sum to zero	• $1 + i + (-1) + (-i) = 0$ as required
13(a)	ans: Proof 5 marks	ć
	 knowing to use integration by parts 	• $\int \sin x \sin^{n-1} x dx$
	• correct application of integration by parts	•
		$-\cos x \sin^{n-1} x - \int (n-1)\cos x \sin^{n-2} x (-\cos x) dx$
		$= -\cos x \sin^{n-1} x + (n-1) \int \cos^2 x \sin^{n-2} x dx$
	knows to use trigonometric identity	$\bullet \cos^2 x = 1 - \sin^2 x$
	combining terms	$\bullet \ [1+(n-1)] \int \sin^n x dx = -\cos x \sin^{n-1} x$
		$+ (n-1) \int \sin^{n-2} x dx$
	• answer	•
		$\int \sin^n x dx = -\frac{1}{n} \cos x \sin^{n-1} x + \frac{n-1}{n} I_{n-2}$

	Give one mark for each •	Illustrations for awarding each mark
13(b)	ans: $\frac{n-1}{n}I_{n-2}$ 2 marks	-
	• applying limits to reduction formula	$\bullet \left(-\frac{1}{n} \cos \frac{\pi}{2} \sin^{n-1} \frac{\pi}{2} \right) - \left(-\frac{1}{n} \cos 0 \sin^{n-1} 0 \right)$
	• answer	$+\frac{n-1}{n}\int_{0}^{\pi/2}\sin^{n-2}xdx$ • $\frac{n-1}{n}I_{n-2}$
13(c)	25	
13(0)	ans: $\frac{35\pi}{256}$ 3 marks	π_2 π_2
	 knowing to use reduction formula repeatedly correctly integrating sin²x answer 	• $\int_{0}^{\frac{\pi}{2}} \sin^{8} x dx = \frac{8-1}{8} \int_{0}^{\frac{\pi}{2}} \sin^{6} x dx = \frac{7}{8} I_{6} \text{etc.}$ • $\sin^{2} x = \frac{1}{2} (1 - \cos 2x)$ • $\frac{7}{8} \cdot \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$
14(a)	ans: $h = \frac{40}{r} - \frac{3r}{2}$ 2 marks	
	 finds surface area correctly finds h in terms of r 	• cylinder = $2\pi rh + \pi r^2$, hemisphere = $2\pi r^2$ $\Rightarrow 80\pi = 2\pi rh + 3\pi r^2$ • $h = \frac{40}{r} - \frac{3r}{2}$
14(b)	ans: 4 cm, 4 cm, 80π cm ³ 8 marks	
	 finds correct expression for volume substitutes expression for h differentiates volume puts derivative = 0 finds value for r checks nature is maximum finds value for h finds value for V 	• $V = \pi r^2 h + \frac{2}{3} \pi r^3$ • $V = 40\pi r - \frac{5}{6} \pi r^3$ • $40\pi - \frac{5}{2} \pi r^2$ • $40\pi - \frac{5}{2} \pi r^2 = 0$ • $r = 4 \text{ cm}$ • nature table • $h = 4 \text{ cm}$ • $V = \frac{320\pi}{3} \text{ cm}^3$
15(a)	ans: $x = 0, x = -8, y = 1$ 2 marks	
	finds equations of vertical asymptotesfinds equation of horizontal asymptote	• $x^2 + 8x = 0 \Rightarrow x = 0, x = -8$ • $f(x) = 1 - \frac{8x + 4}{x^2 + 8x} \Rightarrow y = 1$

	Give one mark for each •	Illustrations for awarding each mark
15(b)	 ans: Proof calculates f'(x) knows to put f'(x) = 0 uses discriminant to prove there is no solution 	• and • $f'(x) = \frac{8x^2 + 8x + 32}{(x^2 + 8x)^2} = 0$ • $b^2 - 4ac = 64 - 4 \times 8 \times 32 < 0$: no solution
15(c)	 ans: see graph on next page x intercepts clearly shown approaches asymptotes correctly completing graph 	See next page
15(d)	 ans: see graph on next page asymptotes in (c) become roots roots in (c) become asymptotes approaches to asymptotes correct completing graph 	See next page

Total 96 marks

Total Marks: 96