Practice Examination A (Unit 3) (Assessing only Unit 3)

MATHEMATICS

Advanced Higher Grade

Time allowed - 1 hour

Read Carefully

1. Full credit will be given only where the solution contains appropriate working.
2. Calculators may be used in this paper.
3. Answers obtained by readings from scale drawings will not receive any credit.
4. This examination paper contains questions graded at all levels.

All questions should be attempted

1. (a) Find the first four terms of the Maclaurin Series for $(1+2 x)^{3 / 2}$.
(b) For what values of x is this series valid?
(c) Use this expansion to find an approximation for $1 \cdot 2^{3 / 2}$ to 4 decimal places.
2. Find values of h and k for which the system

$$
\begin{array}{r}
2 x+h y=8 \\
x+3 y=k
\end{array}
$$

has (a) infinitely many solutions; (b) no solution, giving a reason for each answer.
3. (a) Use the vector product to calculate the area of a triangle with vertices $\mathrm{P}(2,-1,0)$, $\mathrm{Q}(1,1,-1)$ and $\mathrm{R}(3,4,2)$.
(b) Find the equation of the plane passing through triangle PQR .
(c) Determine the point of intersection of the line

$$
\frac{x-1}{2}=\frac{y+1}{1}=\frac{z-1}{3}
$$

with this plane.
4. (a) Show that the matrix $\boldsymbol{A}=\left[\begin{array}{ccc}3 & -1 & -4 \\ 2 & 1 & 0 \\ 0 & 1 & 2\end{array}\right]$ is invertible.
(b) Use elementary row operations to find \boldsymbol{A}^{-1}.
(c) Hence solve the system of equations

$$
\begin{align*}
3 x-y-4 z & =-1 \\
2 x+y & =9 \tag{2}\\
y+2 z & =7
\end{align*}
$$

Marking Scheme - AH - Practice Examination A (Unit 3)

	Give one mark for each -	Illustrations for awarding each mark
1(a)	ans: $1+3 x+\frac{3 x^{2}}{2}-\frac{x^{3}}{2}$ finds values for $f(0)$ and $f^{\prime}(0)$ - finds values for $f^{\prime \prime}(0)$ and $f^{\prime \prime \prime}(0)$ - using correct series - final statement of 4 terms	- $f(0)=1 ; f^{\prime}(0)=3$ - $f^{\prime \prime}(0)=3 ; f^{\prime \prime \prime}(0)=-3$ - $f(x) \approx f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}$ - $1+3 x+\frac{3 x^{2}}{2}-\frac{x^{3}}{2}$
1(b)	ans: $\|x\|<\frac{1}{2} \quad 2$ marks - knows how to find range of validity - finds range correctly	- $\|2 x\|<1$ - $\|x\|<\frac{1}{2}$
1(c)	ans: 1.3145 - knows to substitute $0 \cdot 1$ for x - substituting correctly - finding correct approximation	- $1+3(0 \cdot 1)+\frac{3(0 \cdot 1)^{2}}{2}-\frac{(0 \cdot 1)^{3}}{2}$ - 1.3145
2.	ans: $h=6, k=4 ; \quad h=6, k \neq 4 \quad \mathbf{6}$ marks - constructs augmented matrix - uses row reductions to reduce system to upper triangular form - correct values of h and k for (a) - correct reasoning for (a) - correct values of h and k for (b) - correct reasoning for (b)	- $\left[\begin{array}{ll:l}2 & h & 8 \\ 1 & 3 & k\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 3 & k \\ 2 & h & 8\end{array}\right]$ - $\left[\begin{array}{cc:c}1 & 3 & k \\ 0 & h-6 & 8-2 k\end{array}\right]$ - $h=6, k=4$ - solution is $x=4-3 y$ i.e. infinitely many - $h=6, k \neq 4$ - bottom line reads $0=8-2 k$ which is not possible since $8-2 k \neq 0$

	Give one mark for each -	Illustrations for awarding each mark
3(a)	ans: $\frac{5}{2} \sqrt{3}$ - finding direction vectors - using vector product correctly - knows how to find area of triangle - finding area	- $\overrightarrow{P Q}=\left(\begin{array}{c}-1 \\ 2 \\ -1\end{array}\right) ; \overrightarrow{P R}=\left(\begin{array}{l}1 \\ 5 \\ 2\end{array}\right)$ - $\overrightarrow{P Q} \times \overrightarrow{P R}=\left\|\begin{array}{ccc}\underline{i} & \underline{j} & \underline{k} \\ -1 & 2 & -1 \\ 1 & 5 & 2\end{array}\right\|=9 \underline{i}+\underline{j}-7 \underline{k}$ - Area $=\frac{1}{2}\|9 \underline{i}+\underline{j}-7 \underline{k}\|$ - $\frac{1}{2} \sqrt{75}=\frac{5}{2} \sqrt{3}$
3(b)	ans: $9 x+y-7 z=17$ - know to use vector product for normal - use coefficients of normal for equation of plane - find value of k	- $\underline{n}=9 \underline{i}+\underline{j}-7 \underline{k}$ - $9 x+y-7 z=k$ - $9(2)+(-1)-7(0)=k ; k=17$
3(c)	ans: ($-15,-9,-23$) - write equation of line in parametric form - sub parametric equations into equation of plane - find parameter t - find point of intersection	- $x=1+2 t ; y=-1+t ; z=1+3 t$ - $9(1+2 t)+(-1+t)-7(1+3 t)=17$ - $t=-8$ - $x=1+2(-8)=-15 ; y=-1+(-8)=-9$; $z=1+3(-8)=-23$
4(a)	ans: Proof: show determinant $\neq 0 \quad 3$ marks - know to find determinant - find determinant - conclusion	$\operatorname{det} \boldsymbol{A}=\left\|\begin{array}{ccc}3 & -1 & -4 \\ 2 & 1 & 0 \\ 0 & 1 & 2\end{array}\right\|$ - 2 - A is invertible as $\operatorname{det} \boldsymbol{A} \neq 0$

	Give one mark for each -	Illustrations for awarding each mark
4(b)	ans: $\left[\begin{array}{ccc}1 & -1 & 2 \\ -2 & 3 & -4 \\ 1 & -3 / 2 & 5 / 2\end{array}\right] \quad \mathbf{5}$ marks - construct augmented matrix with I on RHS - row reductions to upper triangular form - non-zero entries of LHS in leading diagonal only - makes LHS = I - find inverse matrix	$\begin{aligned} & \text { - }\left[\begin{array}{ccc:ccc} 3 & -1 & -4 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1 \end{array}\right] \\ & \text { - }\left[\begin{array}{ccc\|ccc} 3 & -1 & -4 & 1 & 0 & 0 \\ 0 & 5 / 3 & 8 / 3 & -2 / 3 & 1 & 0 \\ 0 & 0 & 2 / 5 & 2 / 5 & -3 / 5 & 1 \end{array}\right] \\ & -\left[\begin{array}{ccc\|ccc} 3 & 0 & 0 & 3 & -3 & 6 \\ 0 & 5 / 3 & 0 & -10 / 3 & 5 & -20 / 3 \\ 0 & 0 & 2 / 5 & 2 / 5 & -3 / 5 & 1 \end{array}\right] \\ & -\left[\begin{array}{ccc\|ccc} 1 & 0 & 0 & 1 & -1 & 2 \\ 0 & 1 & 0 & -2 & 3 & -4 \\ 0 & 0 & 1 & 1 & -3 / 2 & 5 / 2 \end{array}\right] \\ & \\ & -\left[\begin{array}{ccc} 1 & -1 & 2 \\ -2 & 3 & -4 \\ 1 & -3 / 2 & 5 / 2 \end{array}\right] \end{aligned}$
4(c)	ans: (4, 1, 3) - premultiply by inverse matrix - find solution	$\cdot\left[\begin{array}{ccc}1 & -1 & 2 \\ -2 & 3 & -4 \\ 1 & -3 / 2 & 5 / 2\end{array}\right]\left[\begin{array}{c}-1 \\ 9 \\ 7\end{array}\right]$ - $(4,1,3)$

Total 36 Marks

