Practice Examination A (Unit 3)

(Assessing only Unit 3)

MATHEMATICS Advanced Higher Grade

Time allowed - 1 hour

Read Carefully

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Calculators may be used in this paper.
- 3. Answers obtained by readings from scale drawings will not receive any credit.
- 4. This examination paper contains questions graded at all levels.

All questions should be attempted

1. (a) Find the first four terms of the Maclaurin Series for
$$(1+2x)^{\frac{3}{2}}$$
. (4)

- (b) For what values of x is this series valid? (2)
- (c) Use this expansion to find an approximation for $1 \cdot 2^{\frac{3}{2}}$ to 4 decimal places. (3)

2. Find values of *h* and *k* for which the system

$$2x + hy = 8$$
$$x + 3y = k$$

has (a) infinitely many solutions; (b) no solution, giving a reason for each answer. (6)

3.	(a) Use the vector product to calculate the area of a triangle with vertices $P(2, -1, 0)$,		
		Q(1, 1, -1) and R(3, 4, 2).	(4)

(b) Find the equation of the plane passing through triangle PQR. (3)

(c) Determine the point of intersection of the line

$$\frac{x-1}{2} = \frac{y+1}{1} = \frac{z-1}{3} \tag{4}$$

with this plane.

4. (a) Show that the matrix $A = \begin{bmatrix} 3 & -1 & -4 \\ 2 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$ is invertible. (3)

- (b) Use elementary row operations to find A^{-1} . (5)
- (c) Hence solve the system of equations

$$3x - y - 4z = -1$$

$$2x + y = 9$$

$$y + 2z = 7$$
(2)

	Give one mark for each •	Illustrations for awarding each mark
1(a)	ans: $1+3x+\frac{3x^2}{2}-\frac{x^3}{2}$ 4 marks • finds values for $f(0)$ and $f'(0)$ • finds values for $f''(0)$ and $f'''(0)$ • using correct series	• $f(0) = 1; f'(0) = 3$ • $f''(0) = 3; f'''(0) = -3$ • $f(x) \approx f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3$
	• final statement of 4 terms	• $1+3x+\frac{3x^2}{2}-\frac{x^3}{2}$
1(b)	 ans: x < 1/2 knows how to find range of validity finds range correctly 	• $ 2x < 1$ • $ x < \frac{1}{2}$
1(c)	ans: 1.31453 marks• knows to substitute 0.1 for x• substituting correctly• finding correct approximation	• • $1+3(0\cdot1)+\frac{3(0\cdot1)^2}{2}-\frac{(0\cdot1)^3}{2}$ • $1\cdot3145$
2.	 ans: h = 6, k = 4; h = 6, k ≠ 4 constructs augmented matrix uses row reductions to reduce system to upper triangular form correct values of h and k for (a) correct reasoning for (a) correct values of h and k for (b) correct reasoning for (b) 	• $\begin{bmatrix} 2 & h & & 8 \\ 1 & 3 & & k \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & k \\ 2 & h & 8 \end{bmatrix}$ • $\begin{bmatrix} 1 & 3 & & k \\ 0 & h-6 & & 8-2k \end{bmatrix}$ • $h = 6, k = 4$ • solution is $x = 4 - 3y$ i.e. infinitely many • $h = 6, k \neq 4$ • bottom line reads $0 = 8 - 2k$ which is not possible since $8 - 2k \neq 0$

	Give one mark for each •	Illustrations for awarding each mark
3(a)	ans: $\frac{5}{2}\sqrt{3}$ 4 marks	
	 finding direction vectors 	• $\overrightarrow{PQ} = \begin{pmatrix} -1\\2\\-1 \end{pmatrix}; \overrightarrow{PR} = \begin{pmatrix} 1\\5\\2 \end{pmatrix}$
	• using vector product correctly	• $\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ -1 & 2 & -1 \\ 1 & 5 & 2 \end{vmatrix} = 9\underline{i} + \underline{j} - 7\underline{k}$
	 knows how to find area of triangle finding area	• Area = $\frac{1}{2} \left 9\underline{i} + \underline{j} - 7\underline{k} \right $ • $\frac{1}{2}\sqrt{75} = \frac{5}{2}\sqrt{3}$
3(b)	ans: $9x + y - 7z = 17$ 3 marks	
	 know to use vector product for normal use coefficients of normal for equation of plane find value of k 	• $\underline{n} = 9\underline{i} + \underline{j} - 7\underline{k}$ • $9x + y - 7z = k$ • $9(2) + (-1) - 7(0) = k; \ k = 17$
3(c)	ans: (-15, -9, -23) 4 marks	
	 write equation of line in parametric form sub parametric equations into equation of plane find parameter <i>t</i> find point of intersection 	• $x = 1 + 2t; y = -1 + t; z = 1 + 3t$ • $9(1 + 2t) + (-1 + t) - 7(1 + 3t) = 17$ • $t = -8$ • $x = 1 + 2(-8) = -15; y = -1 + (-8) = -9;$ z = 1 + 3(-8) = -23
4(a)	 ans: Proof: show determinant ≠ 0 3 marks know to find determinant find determinant 	• det $A = \begin{vmatrix} 3 & -1 & -4 \\ 2 & 1 & 0 \\ 0 & 1 & 2 \end{vmatrix}$
	find determinantconclusion	 2 A is invertible as det A ≠ 0

	Give one mark for each ●	Illustrations for awarding each mark		
4(b)	ans: $\begin{bmatrix} 1 & -1 & 2 \\ -2 & 3 & -4 \\ 1 & -\frac{3}{2} & \frac{5}{2} \end{bmatrix}$ 5 marks • construct augmented matrix with <i>I</i> on RHS	$\bullet \begin{bmatrix} 3 & -1 & -4 & & 1 & 0 & 0 \\ 2 & 1 & 0 & & 0 & 1 & 0 \\ 0 & 1 & 2 & & 0 & 0 & 1 \end{bmatrix}$		
	• row reductions to upper triangular form	$\bullet \begin{bmatrix} 3 & -1 & -4 & & 1 & 0 & 0 \\ 0 & \frac{5}{3} & \frac{8}{3} & & -\frac{2}{3} & 1 & 0 \\ 0 & 0 & \frac{2}{5} & & \frac{2}{5} & -\frac{3}{5} & 1 \end{bmatrix}$		
	 non-zero entries of LHS in leading diagonal only 	$ \begin{bmatrix} 0 & 0 & \frac{1}{5} + \frac{1}{5} & \frac{1}{5} & 1 \\ \begin{bmatrix} 3 & 0 & 0 & \frac{3}{5} - 3 & 6 \\ 0 & \frac{5}{3} & 0 & \frac{-10}{3} & 5 & -\frac{20}{3} \\ 0 & 0 & \frac{2}{5} & \frac{2}{5} & -\frac{3}{5} & 1 \end{bmatrix} $ $ \begin{bmatrix} 1 & 0 & 0 & \frac{1}{5} - \frac{1}{5} & 1 \\ 0 & 1 & 0 & \frac{-2}{5} & \frac{3}{5} & -\frac{3}{5} & 1 \\ 0 & 1 & 0 & \frac{-2}{5} & \frac{3}{5} & -\frac{3}{5} & 1 \end{bmatrix} $		
	• makes LHS = I	$ \bullet \begin{bmatrix} 1 & 0 & 0 & & 1 & -1 & 2 \\ 0 & 1 & 0 & & -2 & 3 & -4 \\ 0 & 0 & 1 & & 1 & -\frac{3}{2} & \frac{5}{2} \end{bmatrix} $		
	• find inverse matrix			
4(c)	ans: (4, 1, 3) 2 marks			
	premultiply by inverse matrixfind solution	• $\begin{bmatrix} 1 & -1 & 2 \\ -2 & 3 & -4 \\ 1 & -\frac{3}{2} & \frac{5}{2} \end{bmatrix} \begin{bmatrix} -1 \\ 9 \\ 7 \end{bmatrix}$ • $(4, 1, 3)$		

Total 36 Marks