Practice Examination A
 (Assessing Units 1 \& 2)

 MATHEMATICS

 MATHEMATICS
 Advanced Higher Grade

Time allowed - $\mathbf{2}$ hours $\mathbf{3 0}$ minutes

Read Carefully

1. Full credit will be given only where the solution contains appropriate working.
2. Calculators may be used in this paper.
3. Answers obtained by readings from scale drawings will not receive any credit.
4. This examination paper contains questions graded at all levels.

All questions should be attempted

1. Differentiate with respect to x, simplifying your answer as far as possible:
(a) $y=\tan ^{-1}\left(\frac{x+1}{x-1}\right)$
(b) $y=\ln (\sec x)$
2. Use Gaussian Elimination to solve the system

$$
\begin{align*}
2 x+3 y-4 z & =-3 \\
x+2 y+3 z & =3 \tag{5}\\
3 x-y-z & =6
\end{align*}
$$

3. Prove by induction $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ for all positive integers, n.
4. Using the substitution $x=\sqrt{t}$, evaluate the integral

$$
\begin{equation*}
\int_{1 / 3}^{3} \frac{1}{t+\sqrt{t}} d t \tag{6}
\end{equation*}
$$

5. Find the coefficient of x^{5} in the expansion of $\left(x^{3}+\frac{2}{x}\right)^{7}$.
6. (a) Find partial fractions for $\frac{2 x^{2}+6 x+36}{\left(x^{2}+9\right)(x+3)}$.
(b) Hence evaluate the integral $\int_{-2}^{0} \frac{2 x^{2}+6 x+36}{\left(x^{2}+9\right)(x+3)} d x$.
7. \quad Suppose that x and y are differentiable functions of t and that

$$
\frac{d^{2} y}{d x^{2}}=t^{2}+1 \quad, \quad \frac{d y}{d x}=t^{3}+3 t
$$

Find $x(t)$ given that $x(1)=4$.
8. PQ is a chord of the loop of the curve $y^{2}=x^{2}\left(8-x^{2}\right), x>0$.

PQ is parallel to the y-axis.
Calculate the maximum possible length of PQ .

9. (a) Find two numbers x and y whose sum is 4 and whose product is 8 .
(b) Plot the solutions on an Argand diagram.
10. Use integration by parts to show that

$$
\begin{equation*}
\int x^{3} \cos x d x=3\left(x^{2}-2\right) \cos x+\left(x^{3}-6 x\right) \sin x+C . \tag{5}
\end{equation*}
$$

11. (a) Find an expression for the sum of n terms of the series

$$
\begin{equation*}
2+\frac{2}{3}+\frac{2}{9}+\ldots \tag{4}
\end{equation*}
$$

in its simplest form.
(b) If $S_{n}=\frac{242}{81}$, find the value of n.
12. An investor has $£ 2000$ with which to open an account and plans to add a further $£ 1000$ each year.

All funds in the account will earn compound interest at a rate of 10% p.a. .
Let $x(t)$ be the amount of money in the account at time t years.
(a) Write down a first order differential equation representing the rate of change of money in the account each year.
(b) Hence show that $t=10 \ln \frac{(1000+0 \cdot 1 x)}{1200}$.
(c) How many years would it take to save $£ 100000$?
13. A function $f(x)$ is defined by

$$
\begin{equation*}
f(x)=\left|\frac{x^{2}-2 x+2}{x-1}\right| . \tag{1}
\end{equation*}
$$

(a) Write down the equation of the vertical asymptote of $f(x)$.
(b) For the function $g(x)=\frac{x^{2}-2 x+2}{x-1}$, show that there is a non-vertical asymptote and find its equation.
(c) Find the coordinates of the stationary points of $g(x)$ and determine their nature.
(d) By first considering the graph of $g(x)$, sketch the graph of $f(x)$ showing all its main features.
14. The semi-circle $y=\sqrt{a^{2}-x^{2}}$ is rotated about the x -axis to generate a sphere.
(a) Find an expression for the volume of the sphere.
(b) Find the volume of the sphere with equation $y=\sqrt{25-x^{2}}$.

END OF QUESTION PAPER

Marking Scheme - AH Practice Paper A

	Give one mark for each -	Illustrations for awarding each mark
1(a)	ans: $\frac{d y}{d x}=-\frac{1}{x^{2}+1}$ - know how to differentiate $\tan ^{-1}$ - chain rule factor - manipulating algebra - answer in simplest form	- $\frac{1}{1+\left(\frac{x+1}{x-1}\right)^{2}}$ - $-\frac{2}{(x-1)^{2}}$ - $\frac{(x-1)^{2}}{2 x^{2}+2} \times-\frac{2}{(x-1)^{2}}$ - $-\frac{1}{x^{2}+1}$
1(b)	ans: $\frac{d y}{d x}=\tan x$ - know how to differentiate \log - chain rule factor - answer in simplest form	- $\frac{1}{\sec x}$ - $\sec x \tan x$ - $\tan x$
2.	ans: $(2,-1,1)$ 5 marks - write system as an augmented matrix with 1 in top left-hand corner (optional) - first modified system - second modified system - using back-substitution to find z - using back-substitution to find x and y	- $\left[\begin{array}{ccc:c}1 & 2 & 3 & 3 \\ 2 & 3 & -4 & -3 \\ 3 & -1 & -1 & 6\end{array}\right]$ - $\left[\begin{array}{ccc:c}1 & 2 & 3 & 3 \\ 0 & -1 & -10 & -9 \\ 0 & -7 & -10 & -3\end{array}\right]$ - $\left[\begin{array}{ccc:c}1 & 2 & 3 & 3 \\ 0 & -1 & -10 & -9 \\ 0 & 0 & 60 & 60\end{array}\right]$ - $z=1$ - $y=-1, x=2$

	Give one mark for each -	Illustrations for awarding each mark
3.	ans: proof by induction - show true for $n=1$ - state inductive hypothesis - consider the case for $n=k+1$ - carry out manipulation - state conclusion	- $\left\{\begin{array}{l}L H S=\frac{d}{d x}(x)=1 ; R H S=1 \times x^{1-1}=1 \\ \text { So true when } n=1\end{array}\right.$ - Assume $\frac{d}{d x}\left(x^{k}\right)=k x^{k-1}$ - Consider $\frac{d}{d x}\left(x^{k+1}\right)$ - $\frac{d}{d x}\left(x \cdot x^{k}\right)=x^{k}+x \cdot k x^{k-1}=x^{k}+k x^{k}$ $=(k+1) x^{k}$ - So, if the formula is valid for n, it is valid for $n+1$. Since it is valid for $n=1$, it is therefore true for all $n \geq 1$.
4.	ans: $\ln 3$ - rewrite integral in terms of x - correct limits - tidy up integral - integrate - evaluate limits - manipulate surds - final answer	- and $\bullet \int_{1 / \sqrt{3}}^{\sqrt{3}} \frac{2 x}{x^{2}+x} d x$ - $\int_{1 / \sqrt{3}}^{\sqrt{3}} \frac{2}{x+1} d x$ - $2 \ln (x+1)] \frac{\sqrt{3}}{\sqrt{3}}$ - $2 \ln (\sqrt{3}+1)-2 \ln \left(\frac{1}{\sqrt{3}}+1\right)$ $2 \ln \left(\frac{\sqrt{3}+1}{\frac{1}{\sqrt{3}}+1} \times \frac{\frac{1}{\sqrt{3}}-1}{\frac{1}{\sqrt{3}}-1}\right)$ $=2 \ln \left(-\frac{3}{2}\left(\frac{1}{\sqrt{3}}-\sqrt{3}\right)\right)=2 \ln \sqrt{3}=\ln 3$
5.	ans: 560 3 marks - correct general term - put power of x equal to 5 and solve for r - calculate coefficient	- $\binom{7}{r}\left(x^{3}\right)^{7-r}\left(\frac{2}{x}\right)^{r}=\binom{7}{r} 2^{r} x^{21-4 r}$ - $21-4 r=5 ; r=4$ - $\binom{7}{4} 2^{4}=35 \times 16=560$

	Give one mark for each •	Illustrations for awarding each mark
6(a)	ans: $\frac{6}{x^{2}+9}+\frac{2}{x+3}$ 4 marks - know how to find partial fractions - know how to find A, B and C - finds A - finds B and C	- $\frac{A x+B}{x^{2}+9}+\frac{C}{x+3}$ - $2 x^{2}+6 x+36=(x+3)(A x+B)+C\left(x^{2}+9\right)$ - $A=0$ - $B=6$ and $C=2$
6(b)	ans: 3.37 units 2 - knows to express integral in partial fractions - and - integrates terms correctly - evaluates limits - final answer	- $\int_{-2}^{0}\left(\frac{6}{x^{2}+9}+\frac{2}{x+3}\right) d x$ - and - $2 \tan ^{-1} \frac{x}{3}+2 \ln \|x+3\|$ - $2 \tan ^{-1} 0+2 \ln 3-\left(2 \tan ^{-1}\left(-\frac{2}{3}\right)+2 \ln 1\right)$ - 3.37 units 2
7.	ans: $x(t)=3 t+1$ - knows formula for $\frac{d^{2} y}{d x^{2}}$ in parametric form - finds $\frac{d}{d t}\left(\frac{d y}{d x}\right)$ - substitutes information into formula - finds $\frac{d x}{d t}$ in simplest form - integrates $\frac{d x}{d t}$ to find x - finds constant of integration	- $\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}$ - $3 t^{2}+3$ - $t^{2}+1=\frac{3 t^{2}+3}{\frac{d x}{d t}}$ - 3 - $x(t)=\int 3 d t=3 t+c$ - $x(1)=4 ; c=1$
8.	ans: 8 units - knows to find max. and min. turning points - knows to use implicit differentiation - differentiates correctly - finds x-coordinate of relevant turning point - finds corresponding y-coordinates - finds max. distance	- $\frac{d y}{d x}=\frac{2 x\left(4-x^{2}\right)}{y}$ - $x=-2,0$ or 2 and chooses $x=2$ from diagram - $y=-4$ or 4 - 8

	Give one mark for each -	Illustrations for awarding each mark
9(a)	ans: $2+2 i, 2-2 i$ 4 marks - set up system of equations - use substitution to obtain quadratic - use quadratic formula to solve quadratic - correct answer	- $x+y=4 ; x y=8$ - $x^{2}-4 x+8=0$ - $x=\frac{4 \pm \sqrt{16-4(1)(8)}}{2}$ - $x=2+2 i$ or $x=2-2 i$
9(b)	ans: Diagram 2 marks - Argand diagram correctly labelled - both points plotted and labelled	
10.	ans: Proof 5 marks - first application of integration by parts - second application of integration by parts - knowing to use integ. by parts again - third application of integration by parts - answer in required form	- $x^{3} \sin x-\int 3 x^{2} \sin x d x$ - and • $\begin{aligned} & x^{3} \sin x-\left[-3 x^{2} \cos x+\int 6 x \cos x d x\right] \\ & =x^{3} \sin x+3 x^{2} \cos x-\int 6 x \cos x d x \end{aligned}$ - $x^{3} \sin x+3 x^{2} \cos x-6 x \sin x-6 \cos x+C$ - $3\left(x^{2}-2\right) \cos x+\left(x^{3}-6 x\right) \sin x+C$
11(a)	ans: $3\left(1-\frac{1}{3^{n}}\right)$ - correct ratio - using correct formula - substituting correctly into formula - answer in simplest form	- $r=\frac{1}{3}$ - $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$ - $\frac{2\left(1-\left(\frac{1}{3}\right)^{n}\right)}{1-\frac{1}{3}}=\frac{2\left(1-\frac{1}{3^{n}}\right)}{\frac{2}{3}}$ - $3\left(1-\frac{1}{3^{n}}\right)$

	Give one mark for each -	Illustrations for awarding each mark
11(b)	ans: $n=5$ - use formula correctly - manipulate formula - answer	- $\frac{242}{81}=3\left(1-\frac{1}{3^{n}}\right) \Rightarrow \frac{242}{243}=1-\frac{1}{3^{n}}$ - $3^{n}=243$ - $n=5$ (using logs or trial and error)
12(a)	ans: $\frac{d x}{d t}=1000+0 \cdot 1 x \quad$ 2 marks - amount of money going into account each year - interest @ 10\%	- 1000 - $0 \cdot 1 x$
12(b)	ans: $t=10 \ln \frac{1000+0 \cdot 1 x}{1200}$ 7 marks - know to use method of separating variables - separates variables correctly - integrates LHS correctly - integrates RHS correctly (incl. constant of integration) - correct initial conditions - finds correct value of C - finds required solution	- and $\bullet \int \frac{d x}{1000+0 \cdot 1 x}=\int d t$ - and - $10 \ln (1000+0 \cdot 1 x)=t+C$ - $x=2000$ at $t=0$ - $C=10 \ln 1200$ - $t=10 \ln \frac{1000+0 \cdot 1 x}{1200}$
12(c)	ans: 23 years 2 marks - substitute in value for x - answer	- $t=10 \ln \frac{1000+0 \cdot 1 \times 100000}{1200}=10 \ln \frac{11000}{1200}$ - $22 \cdot 16$ years ≈ 23 years
13(a)	ans: $x=1$ 1 mark - states equation of vertical asymptote	- $x=1$
13(b)	ans: $y=x-1$ 3 marks - knows to divide - restating function - correctly stating equation of asymptote	and $\frac{x^{2}-2 x+2}{x-1}=(x-1)+\frac{1}{x-1}$ - $y=x-1$

	Give one mark for each •	Illustrations for awarding each mark
13(c)	ans: Max at $(0,-2)$, Min at $(2,2)$ - knows to find $\frac{d y}{d x}$ - knows to put $\frac{d y}{d x}=0$ - finds x-coordinates - finds y-coordinates - determines nature of each by second derivative or nature table	- $\frac{d y}{d x}=1-\frac{1}{(x-1)^{2}}$ - $1-\frac{1}{(x-1)^{2}}=0$ - $x=0$ or $x=2$ - $(0,-2),(2,2)$ - $\frac{d^{2} y}{d x^{2}}=\frac{2}{(x-1)^{3}} ; \operatorname{Max}$ at $(0,-2), \operatorname{Minat}(2,2)$
13(d)	ans: sketch - sketch showing all relevant points - correctly shows how curve approaches asymptotes - knows to reflect all parts of graph from below the x-axis to above the x-axis - reflects correctly	See sketch at end of marking scheme
14(a)	ans: $\frac{4}{3} \pi a^{3} \quad 8$ marks - draws sketch showing semi-circle above x-axis - Roots of semi-circle at $-a$ and a - knows how to find volume of revolution - limits of integration as $-a$ and a - applies formula correctly - integrates correctly - evaluates limits - correct answer	- and • - and • $V=\int_{-a}^{a} \pi y^{2} d x$ - $V=\int_{-a}^{a} \pi\left(a^{2}-x^{2}\right) d x$ - $\pi\left[a^{2} x-\frac{x^{3}}{3}\right]_{a}^{a}$ - $\pi\left[a^{2}(a)-\frac{a^{3}}{3}\right]-\pi\left[a^{2}(-a)-\frac{(-a)^{3}}{3}\right]$ - $\frac{4}{3} \pi a^{3}$
14(b)	ans: 523.6 units $^{3} \quad 2$ marks - knows to put $a=5$ - finds volume	- $\frac{4}{3} \pi\left(5^{3}\right)$ - 523.6 units 3
Total 100 Marks		

Sketch for question 13(d)

