Practice Examination A

(Assessing Units 1 & 2)

MATHEMATICS Advanced Higher Grade

Time allowed - 2 hours 30 minutes

Read Carefully

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Calculators may be used in this paper.
- 3. Answers obtained by readings from scale drawings will not receive any credit.
- 4. This examination paper contains questions graded at all levels.

All questions should be attempted

1. Differentiate with respect to *x*, simplifying your answer as far as possible:

(a)
$$y = tan^{-1}\left(\frac{x+1}{x-1}\right)$$
 (4)

$$(b) \qquad y = ln(sec x) \tag{3}$$

2. Use Gaussian Elimination to solve the system

$$2x + 3y - 4z = -3$$

$$x + 2y + 3z = 3$$

$$3x - y - z = 6$$
(5)

3. Prove by induction
$$\frac{d}{dx}(x^n) = n x^{n-1}$$
 for all positive integers, *n*. (5)

4. Using the substitution $x = \sqrt{t}$, evaluate the integral

$$\int_{\frac{1}{2}}^{3} \frac{1}{t + \sqrt{t}} dt \tag{6}$$

5. Find the coefficient of
$$x^5$$
 in the expansion of $\left(x^3 + \frac{2}{x}\right)^7$. (3)

6. (a) Find partial fractions for
$$\frac{2x^2+6x+36}{(x^2+9)(x+3)}$$
. (4)

(b) Hence evaluate the integral
$$\int_{-2}^{0} \frac{2x^2 + 6x + 36}{(x^2 + 9)(x + 3)} dx$$
 (3)

7. Suppose that *x* and *y* are differentiable functions of *t* and that

$$\frac{d^2 y}{dx^2} = t^2 + 1 \quad , \quad \frac{dy}{dx} = t^3 + 3t \; .$$

$$1) = 4. \tag{6}$$

Find x(t) given that x(1) = 4.

(6)

9. (a) Find two numbers x and y whose sum is 4 and whose product is 8. (4)
(b) Plot the solutions on an Argand diagram. (2)

10. Use integration by parts to show that

$$\int x^3 \cos x \, dx = 3(x^2 - 2) \cos x + (x^3 - 6x) \sin x + C \quad . \tag{5}$$

11. (a) Find an expression for the sum of *n* terms of the series

$$2 + \frac{2}{3} + \frac{2}{9} + \dots$$
 (4)

in its simplest form.

(b) If
$$S_n = \frac{242}{81}$$
, find the value of *n*. (2)

12. An investor has £2000 with which to open an account and plans to add a further £1000 each year.

All funds in the account will earn compound interest at a rate of 10% p.a. .

Let x(t) be the amount of money in the account at time t years.

(*a*) Write down a first order differential equation representing the rate of change of money in the account each year.

(b) Hence show that
$$t = 10 \ln \frac{(1000 + 0.1x)}{1200}$$
. (7)

(2)

- (c) How many years would it take to save $\pounds 100\ 000\ ?$ (2)
- 13. A function f(x) is defined by

$$f(x) = \left| \frac{x^2 - 2x + 2}{x - 1} \right| \, .$$

- (a) Write down the equation of the vertical asymptote of f(x). (1) (b) For the function $g(x) = \frac{x^2 - 2x + 2}{x - 1}$, show that there is a non-vertical asymptote and find its equation. (3)
- (c) Find the coordinates of the stationary points of g(x) and determine their nature. (5)
- (d) By first considering the graph of g(x), sketch the graph of f(x) showing all its main features. (4)
- 14. The semi-circle $y = \sqrt{a^2 x^2}$ is rotated about the x-axis to generate a sphere.
 - (*a*) Find an expression for the volume of the sphere. (8)
 - (b) Find the volume of the sphere with equation $y = \sqrt{25 x^2}$. (2)

END OF QUESTION PAPER

	Give one mark for each •	Illustrations for awarding each mark
1(a)	ans: $\frac{dy}{dx} = -\frac{1}{x^2 + 1}$ 4 marks	
	• know how to differentiate tan ⁻¹	• $\frac{1}{1 + \left(\frac{x+1}{x-1}\right)^2}$
	• chain rule factor	• $-\frac{2}{(x-1)^2}$
	 manipulating algebra 	• $\frac{(x-1)^2}{2x^2+2} \times -\frac{2}{(x-1)^2}$
	• answer in simplest form	$\bullet -\frac{1}{x^2+1}$
1(b)	ans: $\frac{dy}{dx} = tan x$ 3 marks	
	• know how to differentiate log	• $\frac{1}{sec x}$
	• chain rule factor	• sec x tan x
	• answer in simplest form	• tan x
2.	ans: (2, -1, 1) 5 marks	
	• write system as an augmented matrix with 1 in top left-hand corner (optional)	
	• first modified system	$\bullet \begin{bmatrix} 1 & 2 & 3 & & 3 \\ 0 & -1 & -10 & & -9 \\ 0 & -7 & -10 & & -3 \end{bmatrix}$
	• second modified system	
	 using back-substitution to find <i>z</i> using back-substitution to find <i>x</i> and <i>y</i> 	• $z = 1$ • $y = -1, x = 2$

	Give one mark for each •	Illustrations for awarding each mark
3.	ans: proof by induction 5 marks	
	• show true for $n = 1$	• $\begin{cases} LHS = \frac{d}{dx}(x) = 1; RHS = 1 \times x^{1-1} = 1\\ So true when n = 1 \end{cases}$
	• state inductive hypothesis	• Assume $\frac{d}{dx}(x^k) = k x^{k-1}$
	• consider the case for $n = k + 1$	• Consider $\frac{d}{dx}(x^{k+1})$
	• carry out manipulation	• $\frac{d}{dx}(x \cdot x^k) = x^k + x \cdot kx^{k-1} = x^k + kx^k$ $= (k+1)x^k$
	• state conclusion	• So, if the formula is valid for n , it is valid for $n+1$. Since it is valid for $n = 1$, it is therefore true for all $n \ge 1$.
4.	ans: <i>ln</i> 3 7 marks	
	 rewrite integral in terms of x correct limits tidy up integral 	• and • $\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{2x}{x^2 + x} dx$ • $\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{2}{x + 1} dx$
	integrateevaluate limits	• $2ln(x+1)$ • $2ln(x+1)$] $\sqrt{3}_{1/\sqrt{3}}$ • $2ln(\sqrt{3}+1) - 2ln(\frac{1}{\sqrt{3}}+1)$
	manipulate surdsfinal answer	• and • $2\ln\left(\frac{\sqrt{3}+1}{\frac{1}{\sqrt{3}}+1} \times \frac{\frac{1}{\sqrt{3}}-1}{\frac{1}{\sqrt{3}}-1}\right)$ $= 2\ln\left(-\frac{3}{2}\left(\frac{1}{\sqrt{3}}-\sqrt{3}\right)\right) = 2\ln\sqrt{3} = \ln 3$
5.	ans: 560 3 marks	
	 correct general term put power of <i>x</i> equal to 5 and solve for <i>r</i> calculate coefficient 	• $\binom{7}{r} (x^3)^{7-r} (\frac{2}{x})^r = \binom{7}{r} 2^r x^{21-4r}$ • $21 - 4r = 5; r = 4$ • $\binom{7}{4} 2^4 = 35 \times 16 = 560$

	Give one mark for each •	Illustrations for awarding each mark
6(a)	ans: $\frac{6}{x^2+9} + \frac{2}{x+3}$ 4 marks	
	• know how to find partial fractions	• $\frac{Ax+B}{x^2+9} + \frac{C}{x+3}$
	 know how to find A, B and C finds A finds B and C 	• $2x^{2} + 6x + 36 = (x+3)(Ax+B) + C(x^{2}+9)$ • $A = 0$ • $B = 6$ and $C = 2$
6(b)	ans: 3.37 units ² 5 marks	
	• knows to express integral in partial fractions	• $\int_{-2}^{0} \left(\frac{6}{x^2 + 9} + \frac{2}{x + 3} \right) dx$
	• and • integrates terms correctly	• and • $2\tan^{-1}\frac{x}{3} + 2\ln x+3 $
	• evaluates limits	• $2\tan^{-1}0 + 2\ln 3 - \left(2\tan^{-1}\left(-\frac{2}{3}\right) + 2\ln 1\right)$
	• final answer	• 3.37 units^2
7.	ans: $x(t) = 3t + 1$ 6 marks	
	 knows formula for d²y/dx² in parametric form finds d/dt (dy/dx) substitutes information into formula finds dx/dt in simplest form integrates dx/dt to find x finds constant of integration 	• $\frac{d^2 y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$ • $3t^2 + 3$ • $t^2 + 1 = \frac{3t^2 + 3}{\frac{dx}{dt}}$ • 3 • $x(t) = \int 3 dt = 3t + c$ • $x(1) = 4 ; c = 1$
8.	ans: 8 units 6 marks	
	 knows to find max. and min. turning points knows to use implicit differentiation differentiates correctly finds <i>x</i>-coordinate of relevant turning point finds corresponding <i>y</i>-coordinates finds max. distance 	• • $\frac{dy}{dx} = \frac{2x(4-x^2)}{y}$ • $x = -2, 0 \text{ or } 2$ and chooses $x = 2$ from diagram • $y = -4 \text{ or } 4$ • 8

	Give one mark for each •	Illustrations for awarding each mark
9(a)	ans: $2 + 2i$, $2 - 2i$ 4 marks	
	• set up system of equations	• $x + y = 4; xy = 8$
	• use substitution to obtain quadratic	• $x^2 - 4x + 8 = 0$
	• use quadratic formula to solve quadratic	• $x = \frac{4 \pm \sqrt{16 - 4(1)(8)}}{2}$
	• correct answer	• $x = 2 + 2i$ or $x = 2 - 2i$
9(b)	ans: Diagram 2 marks	_
	 Argand diagram correctly labelled both points plotted and labelled 	$ \begin{array}{c} 1m \\ \bullet 2+2i \\ \bullet \end{array} \\ Re \\ \bullet 2-2i \end{array} $
10.	ans: Proof 5 marks	
	 first application of integration by parts second application of integration by parts knowing to use integ. by parts again third application of integration by parts answer in required form 	• $x^{3} \sin x - \int 3x^{2} \sin x dx$ • and • $x^{3} \sin x - \left[-3x^{2} \cos x + \int 6x \cos x dx\right]$ = $x^{3} \sin x + 3x^{2} \cos x - \int 6x \cos x dx$ • $x^{3} \sin x + 3x^{2} \cos x - 6x \sin x - 6 \cos x + C$ • $3(x^{2} - 2)\cos x + (x^{3} - 6x)\sin x + C$
11(a)	ans: $3\left(1-\frac{1}{3^n}\right)$ 4 marks	
	• correct ratio	• $r = \frac{1}{3}$
		$a(1-r^n)$
	• using correct formula	• $S_n = \frac{n(r-r)}{1-r}$
	 substituting correctly into formula answer in simplest form 	• $\frac{2\left(1-\left(\frac{1}{3}\right)^n\right)}{1-\frac{1}{3}} = \frac{2\left(1-\frac{1}{3^n}\right)}{\frac{2}{3}}$
	• answer in simplest form	• $3\left(1-\frac{3}{3^n}\right)$

	Give one mark for each •	Illustrations for awarding each mark
11(b)	ans: $n = 5$ 3 marks	
	use formula correctlymanipulate formulaanswer	• $\frac{242}{81} = 3\left(1 - \frac{1}{3^n}\right) \Rightarrow \frac{242}{243} = 1 - \frac{1}{3^n}$ • $3^n = 243$ • $n = 5$ (using logs or trial and error)
12(a)	dx	
12(u)	ans: $\frac{dx}{dt} = 1000 + 0 \cdot 1x$ 2 marks	
	 amount of money going into account each year interest @ 10% 	 1000 0.1x
12(b)	ans: $t = 10ln \frac{1000 + 0 \cdot 1x}{1200}$ 7 marks	
	 know to use method of separating variables separates variables correctly integrates LHS correctly integrates RHS correctly (incl. constant of integration) correct initial conditions finds correct value of C 	• and • $\int \frac{dx}{1000+0.1x} = \int dt$ • and • $10 \ln(1000+0.1x) = t + C$ • $x = 2000$ at $t = 0$ • $C = 10 \ln 1200$
	• finds required solution	• $t = 10 \ln \frac{1000 + 0.1x}{1200}$
12(c)	ans: 23 years 2 marks	
	 substitute in value for x answer 	• $t = 10 ln \frac{1000 + 0.1 \times 100000}{1200} = 10 ln \frac{11000}{1200}$ • 22.16 years ≈ 23 years
13(a)	ans: $\overline{x=1}$ 1 mark	
	• states equation of vertical asymptote	• $x = 1$
13(b)	ans: $y = x - 1$ 3 marks	
	 knows to divide restating function correctly stating equation of asymptote 	• and • $\frac{x^2 - 2x + 2}{x - 1} = (x - 1) + \frac{1}{x - 1}$ • $y = x - 1$

	Give one mark for each •	Illustrations for awarding each mark
13(c)	ans: Max at (0, -2), Min at (2, 2) 5 marks	
	 knows to find dy/dx knows to put dy/dx =0 finds x-coordinates finds y-coordinates determines nature of each by second derivative or nature table 	• $\frac{dy}{dx} = 1 - \frac{1}{(x-1)^2}$ • $1 - \frac{1}{(x-1)^2} = 0$ • $x = 0 \text{ or } x = 2$ • $(0, -2), (2, 2)$ • $\frac{d^2y}{dx^2} = \frac{2}{(x-1)^3}; Max \text{ at } (0, -2), Min \text{ at } (2, 2)$
13(d)	ans: sketch 4 marks	
	 sketch showing all relevant points correctly shows how curve approaches asymptotes knows to reflect all parts of graph from below the <i>x</i>-axis to above the <i>x</i>-axis reflects correctly 	See sketch at end of marking scheme
14(a)	ans: $\frac{4}{2}\pi a^3$ 8 marks	<u> </u>
	 draws sketch showing semi-circle above <i>x</i>-axis Roots of semi-circle at -<i>a</i> and <i>a</i> knows how to find volume of revolution 	• and • $V = \int_{-a}^{a} \pi y^2 dx$
	• limits of integration as $-a$ and a	- <i>a</i>
	• applies formula correctly	• $V = \int_{-a}^{a} \pi \left(a^2 - x^2\right) dx$
	• integrates correctly	• $\pi \left[a^2 x - \frac{x^3}{3}\right]_a^a$
	evaluates limits	• $\pi \left[a^2(a) - \frac{a^3}{3} \right] - \pi \left[a^2(-a) - \frac{(-a)^3}{3} \right]$
	• correct answer	• $\frac{4}{3}\pi a^3$
14(b)	ans: 523.6 units ³ 2 marks	
	 knows to put a = 5 finds volume 	• $\frac{4}{3}\pi(5^3)$ • 523.6 units ³
<u> </u>	Total 10	00 Marks

Sketch for question 13(d)

